###
Types of Motion

Students will distinguish between and/or interpret the types of motion.

###
Introducing Conic Sections

Given a verbal description or a pictorial representation, the student will describe a conic section as the intersection of a cone and a plane.

###
Graphing Conic Sections: Ellipses

Given an equation, the student will use parameter changes to graph an ellipse and to identify the changes in the graph of an ellipse.

###
Graphing Conic Sections: Hyperbolas

Given an equation, the student will use parameter changes to graph a hyperbola and to identify the changes in the graph of a hyperbola.

###
Light: Reflection and Refraction

This is a tier I instructional resource to provide a scaffolded learning experience for TEKS (5)(6)(C).

###
Wave Behavior: Doppler Effect

Given diagrams, scenarios, or illustrations, students will identify the characteristics of the Doppler effect.

###
Waves: Practical Applications

Given diagrams, scenarios, illustrations, or descriptions, students will identify uses of waves in medical and industrial applications.

###
Newton's Law of Inertia

This resource provides instructional resources for Newton's First Law, the law of inertia.

###
Conservation of Momentum

This resource was created to support TEKS IPC(4)(E).

###
Newton's Law of Action-Reaction

This resource is to support TEKS (8)(6)(C), specifically the Newton's third law or the law of action-reaction.

###
Electric and Magnetic Forces

Given diagrams, illustrations, or descriptions, students will identify examples of electric and magnetic forces.

###
Electromagnetic Forces

Given schematic diagrams, illustrations or descriptions, students will identify the relationship of electric and magnetic fields in applications such as generators, motors, and transformers.

###
Waves—Properties

Given diagrams, descriptions or illustrations, students will determine the properties of wave motion and wave propagation as they pass through different media.

###
3.04 Kinematic Equations Graphical Analysis

In this video, we analyze hypothetical experiments by graphing position, velocity, and acceleration versus time, qualitatively.

###
3.05 Kinematic Equations in Two Dimensions

In this video, we apply the three primary kinematic equations to projectile motion problems.

###
3.06 Relative Motion

In this video, the inherent (classical) relativity of velocity measurements is explored, qualitatively and quantitatively, in both one and two dimensions.

###
3.01 Distance and Displacement

In this video, we explore the difference between distance traveled (an example of a scalar) and displacement (an example of a vector), and we review some basic vector math.

###
3.02 Average Speed and Average Velocity

In this video, we explore the difference between speed and velocity, and their relationship to distance and displacement.

###
3.03 Kinematic Equations in One Dimension

In this video, we introduce the three primary kinematics equations and apply them to one-dimensional problems. The term "acceleration" is also introduced.

###
7.01 Sequences and Series, Part 1

In this video, students will learn the definition of a sequence and how to calculate its general term.